

Institute of Refractories Engineers

Keeping the Heat In

Sheffield October 9th 2014

Sam Franklin

To provide an understanding of heat flow through refractory linings and the different types of insulating refractories available.

The advantages and disadvantages of different types of insulation materials will be presented

Heat and Temperature

Heat is a form of energy. Temperature is a measure of the heat (energy) content of a material

If a material cools down it is losing heat energy

If a material heats up.....

A material can get hotter if We use energy (eg burning a fuel) Heat flows into the material from somewhere else

A material can get colder if it looses heat (energy) to something else

Heat Flow

Heat can only flow in one direction

From Hot to Cold

So Hot things tend to cool down and warm things tend to heat up.

Heat Transfer at Within a Refractory

- Conduction Through Solid Ref'y
- Conduction in Gas
- Convection of gas in pore
- Radiation across pore
- Radiation in Solid

Thermal Conductivity

Thermal Conductivity is a measure of how much heat flows through a material.

To calculate actual heat flow and energy loss, need to know thickness and area

Thermal conductivity is measured in W/mK

Thermal Conductivity – Typical Values

	W/mK
Copper	390
Aluminium	200
Wood	0.04
Air	0.025 (excludes convection)
Alumina Refractories	1 - 3
Basic Refractories	2.5 - 6
Carbon Containing Refractories	5 - 25
Insulating Refractories	0.03 - 0.6

Thermal Conductivity

Thermal Conductivity Varies with temperature Room Temperature Conductivity may be 30% of that at service temperature May Vary with Direction eg fibre modules Different test methods give different results

Thermal Calculations

The accuracy of a thermal calculation depends on How good the thermal model is How accurate the thermal conductivity data is If it includes all the factors, eg wind

Some safety margin should always be built into a thermal design to allow for errors in a model

Heat flow can change over time Degrading of materials change to surface of a vessel, eg dust build up, corrosion paint peeling This can change the heat flow and temperature gradient

Material	Thermal Conductivity k, W/mK	Thickness, mm
Alumina Castable	1.5	750
Insulating Castable	0.5	250
Insulating Firebrick	0.25	125
Ceramic Fibre Board	0.1	50
Microporous panel	0.03	15

Exercise 1 – Insulation Comparison						
Alumina Castable	200	150	100	50		
Ceramic Fibre Board	50	100	150	200		
R (total)	0.633	1.1	1.567	2.033		
Q/A	1579	909	638	492		
Interface Temp	989	1009	1057	1084		

Types of Insulation

Insulation Monolithics – Ian Spicer Insulating Firebrick – Dave Woodhead Fibre Products – Allan Davies Other Products – Sam Franklin