

						ALMATIS
Prope	rties of A	lumi	nate C	ement phas	ses	
	Mineral	CaO	Al ₂ O ₃	Melting point (°C)	Density (g/cm³)	
	С	99.8		2570	3.25/3.38	
	C ₁₂ A ₇	48.6	51.4	1360-1390	2.69	
	CA	35.4	64.6	1600	2.98	
	CA ₂	21.7	78.3	1750-1765 (decomposition)	2.91	
	CA ₆	8.4	91.6	1875	3.38	
	αΑ		99.8	2051	3.98	
Think alumina, th	hink Almatis.					Page 11

		ALMATIS
Calcined and reactive alumir	na	
Characterisation: • Soda content (Na ₂ O) • Sintering reactivity • Primary crystal size • Specific surface area	Fineness • Unground (UG) • Ground (G) • Fine Ground (FG) • Super Ground (SG)	≈ 100μm ≤ 63μm ≤ 45μm ≤ 20μm
Think alumina, think Almatis.		Page 20

Castable fo	rmulation	ALMATIS PREMIUM ALUMINA
3	Aggregates Fraction > 45 μm 65-75 %	-The brick to build the foundation (Coarse) - Filling the intermediate voids between the coarse aggregate (Fine)
	Matrix products Fraction < 45 μm 25-35 % Significant influence on: Rheology, Workability, water demand, strength development	 Fill the micron size voids without adding excess liquid Amount impacts rheology: vibration, self flow, pumpable Size distribution can cause dilatant or shear thinning behaviour Binders hold it together until thermal sintering occurs Additives water reducing: dispersants, deflocculants, plasticizers Set controlling: retarders, accelerators
Think alumina, think Almatis	.	Page 2

		ALMATIS
Castable f	ormulation	
	Aggregates Fraction > 45 μm 65-75 %	 Tabular Alumina Spinel Bonite Others
	Matrix products Fraction < 45 μm 25-35 %	 Calcined and Reactive Alumina Tabular-,Spinel-,Bonite- fines Calcium Aluminate Cement Alphabond Dispersing Alumina
Think alumina, think Alma	Significant influence on: Rheology, Workability, water demand, strength development atts.	 Other fines Page 23

Self flowing Different To Exother	g ta emp mic	bular beratu Read	low o ures	emer + Dis Times	it cas persi	table ng Alı	umina	a com	binat	ions			
Test	#	0	1	2	3	4	5	6	7	8	9	10	11
Test Temp.	ů	3	7	7	20	20	20	20	20	20	35	35	35
ADW 1	%	1	1	0,5	0,8	0,2	0,8	0,7	0,6	0,4	0,5	0,2	0,1
ADS 1	%	-	-	0,5	0,2	0,8	-	-	-	-	-	-	-
ADS 3	%	-	-	-	-	-	0,2	0,3	0,4	0,6	0,5	0,8	0,9
EXO Start	h	2,9	1,1	2,7	0,5	1,0	0,6	1,2	2,1	4,2	0,2	1,7	2,6
EXO Max	h	13	7,3	18,7	2,0	6,9	2,9	3,8	5,6	11,1	1,6	3,4	5,2
Note:	FXO s	start -> co	orrelates	with work	cina time	flow stor			8	8			i

