


**Properties of Refractories** 

## Physical Testing - Why

- Quality Control
- Characterisation
- Product Development
- Problem solving
- Product Selection



# **Physical Testing**



#### Quality Control

- Standard routine tests that are quick and easy for Quality Control
- · Results can be determined either during production or shortly afterwards
- "Control Tests"

## Routine Refractory Testing

| Density / Porosity             | EN 993-1    |
|--------------------------------|-------------|
| CCS                            | ISO 10059-2 |
| Cold MOR                       | EN 993-6    |
| Hot MOR                        | EN 993-7    |
| Particle Size Analysis         | EN1402-3    |
| Flow Properties / Setting Time | ISO 1927-4  |
| PLC                            | EN 993-10   |
| Thermal Expansion              | EN 993-19   |



# Bulk Density and Apparent Porosity

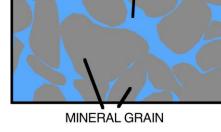
EN 993-1 Determination of bulk density and apparent porosity

**Bulk Density** - The ratio of the mass of the dry material of a porous body to its bulk volume

**Bulk Volume** – The sum of the volumes of the solid material, the open pores and closed pores in a porous body

**Apparent Porosity** – The ratio of the total volume of the open pores in a porous body to its bulk volume, expressed a percentage of the bulk volume

# Bulk Density and Apparent Porosity


EN 993-1 Determination of bulk density and apparent porosity

Apparatus :

Evacuating Equipment



Balance



PORE SPACE





Institute of **Refractories** Engineers

# Bulk Density and Apparent Porosity

EN 993-1 Determination of bulk density and apparent porosity

Measurements :  $m_1 = mass of dry test piece$  $m_2 = apparent mass of immersed test piece$  $m_3 = mass of soaked test piece$ 

 $\rho_{\text{liq}}$  = Density of immersion liquid

## Bulk Density and Apparent Porosity

EN 993-1 Determination of bulk density and apparent porosity

Calculations :

Bulk Density =

 $\frac{m_1 x \rho_{liq}}{m_3 - m_2}$ 

Apparent Porosity =  $\frac{m_3 - m_1}{m_3 - m_2} \times 100\%$ 

m<sub>1</sub> = mass of dry test piece

 $m_2$  = apparent mass of immersed test piece

 $m_3$  = mass of soaked test piece

 $\rho_{\text{liq}}$  = Density of immersion liquid





## Cold Crushing Strength

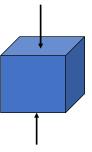
ISO 10059-2 Determination of cold compressive strength (CCS)

The maximum load (applied under specified conditions at room temperature) divided by the area over which the load is applied, that a refractory product will withstand before failure occurs.

C.C.S. = <u>Maximum Force</u> Cross Sectional Area

Units N / mm<sup>2</sup>

## Cold Crushing Strength


**Cold Compression Testing Machine** 

The machine shall be capable of increasing the stress rate at 0.2MPa/s until the test piece is unable to support the load.

The machine should be capable of measuring the load exerted on the test piece to within +/- 2%

5









# Cold Crushing Strength

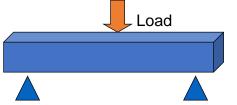


Sample Loading








# Modulus of Rupture (Bend Strength)



EN 993-6 / EN 993-7 Determination of modulus of rupture at ambient and elevated temperatures

Definition :

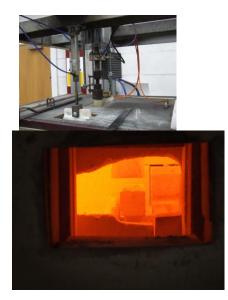
The maximum transverse stress that a prismatic test piece of specified dimensions can withstand when it is bent in a three point loading device.



# Modulus of Rupture (Bend Strength)



Modulus of rupture is the ratio of the bending moment at the point of failure  $(M_{max})$  to the moment of resistance W (the section modulus) and is calculated from the following equation :


 $\frac{MOR}{W} = \frac{M_{max}}{W} = \frac{3 \times F_{max} L_s}{2 \ bh^3}$ 

Maximum <u>load</u> (Failure Load) in flexure is actually recorded Flexural <u>Stress</u> is calculated from load and test piece dimensions Units N/mm<sup>2</sup> (MPa) Can be measured at ambient or elevated temperatures.

## Modulus of Rupture (Bend Strength)







## Permanent Linear Change (PLC)



BSEN 993-10 Determination of permanent change in dimensions on heating (PLC)

Definition :

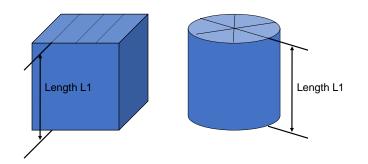
The expansion or contraction that remains in a shaped refractory that is heated to a specified temperature for a specified time and ten cooled to ambient temperature.

# Permanent Linear Change (PLC)



| BSEN 993-10<br>on heating (PLC) | Determination of permanent change in dimensions |
|---------------------------------|-------------------------------------------------|
| Equipment :                     |                                                 |

- Furnace
- Vernier Calipers


Test Pieces :

- Rectangular Prism 50 x 50 x 60mm
- Cylinders 50mm diameter x 60mm height

# Permanent Linear Change (PLC)



BSEN 993-10 Determination of permanent change in dimensions on heating (PLC)



Length of test piece measured in 3 positions and positions marked.

# Permanent Linear Change (PLC)



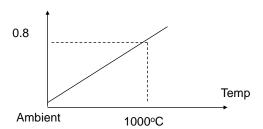
#### BSEN 993-10 Determination of permanent change in dimensions on heating (PLC)

Heating Rates

| Test Temperatures up to 1250°C | Ambient to 50C below test temperature Last 50C               | 5-10ºC/min<br>1-5ºC/min |
|--------------------------------|--------------------------------------------------------------|-------------------------|
| Test Temperatures above 1250°C | Ambient to 1200°C below test temperature Last $50^{\circ}$ C | 5-10ºC/min<br>2-5ºC/min |

## Thermal Expansion




The proportional extension which occurs when a material is heated.

A test piece is heated at a specified uniform rate and its change in <u>length</u> and temperature measured either continuously or at regular frequent intervals.

#### Thermal Expansion

Thermal Expansion

Results can be plotted graphically.

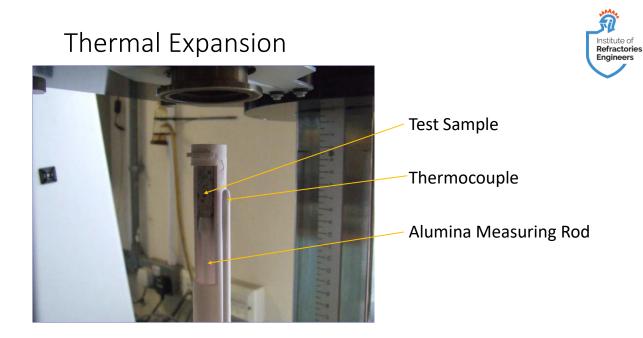


Or quoted as a mean co-efficient of expansion per unit of temperature up to a specified maximum temperature.

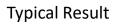
The co-efficient of thermal expansion up to  $1000^{\circ}$ C would be 0.0008 i.e. it would expand 0.0008% for every °C temperature increase.



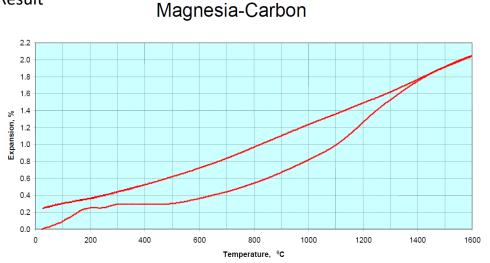



Vertical Dilatometer

Maximum Operating Temp =  $1600^{\circ}C$ 


Tests can be run in air or controlled atmosphere (nitrogen or argon)

A highly sensitive linear velocity displacement transducer (LVDT) accurately measures expansion / shrinkage






# Thermal Expansion







# Monolithics

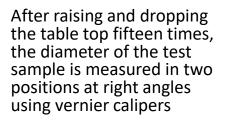


Flowability of Dense Castables

Principle :

- A standard size test specimen is prepared from freshly mixed material and placed on a flow table conforming to BS890 or ASTM C230.
- The specimen is then deformed by raising and dropping the table top through a known height a prescribed number of times.
- The diameter of the test sample is then measured at two points at right angles to each other and the mean diameter is recorded as the flow value.

## Flowability of Dense Castables




Institute of **Refractories** 

- Mould filled just over half way and vigorously tamped to form a fully compacted homogeneous layer.
- Remainder of mould filled and tamped in identical manner
- Mould is then carefully removed and the flow table top is the raised and dropped fifteen times in a minimum of fifteen seconds.



### Flowability of Dense Castables



For Self-Flow Castables, the table is not raised and dropped. The flow is measured after 1 minute



## Setting of Castables

Principle :

A sample of castable is mixed with a standard water addition and placed in a plastic bag.

The bag contents are vibrated to compact the material and the bag is then left undisturbed in a constant temperature environment.

The sample is tested with the Ridsdale Green Hardness tester, scale C, periodically and the time noted when a reading of 80 or above is obtained at two or more points on the surface of the sample.

Having recorded the time the test commenced, the setting time is recorded as the time elapsed between these two points.

## Setting of Castables



Hardness of castable monitored over time using Ridsdale hardness tester





## Particle Sizing



Institute of Refractories Engineers



#### Standard Screen Sizes


- 8 mm
- 4 mm
- 2.8 mm
- 2.0 mm
- 1.0 mm
- 0.5 mm
- 0.25 mm
- 125 µm
- 63 µm

### Particle Sizing – Laser Sizer



Principle :

Laser diffraction measures particle size distributions by measuring the angular variation in intensity of light scattered as a laser beam passes through a dispersed particulate sample.



# Summary

Standard physical tests provide

- The base knowledge for consistency
- Limited characterisation of the material

Cannot predict how well a product will perform in service





#### **Thank You**

https://irengineers.co.uk/

© IRE 2021