

Institute Of Refractories Engineers

Batching and Mixing of Refractories

Holiday Inn 25th September 2008

Dave Pickard

Batching and Mixing Overview

- Aggregate Processing
- Aggregate Characterisation sizes
- Blending
- Density of Aggregates
- Product Production

Institute Of Refractories Engineers

- Crushing and Grading
- Refractory Aggregates
 - Size
 - Shape
 - Density

Batching and Mixing Crushing and Grading

Batching and Mixing Grain Size – Typical Sieve Sizes

Batching and Mixing Aggregate Size

Batching and Mixing Aggregate Characterisation

Sieve Analysis (% retained)

Sieve Size (mm)	Brown Fused Alumina				
	-10.0 + 5.0	-5.0 + 3.0	-3.0 + 1.0	-1.0 + 0.5	-0.5 + 0.0
9.500					
8.000	24.0				
4.000	74.0	45.0			
2.800	2.0	55.0	2.0		
2.000			15.0		
1.000			80.0		
0.500			3.0	98.0	2.0
0.300				2.0	27.0
0.250					11.0
0.125					30.0
0.075					15.0
-0.075					15.0

Batching and Mixing Fillers and Binders

Cement Calcined Alumina Reactive Alumina Mineral Clay Volatilised Silica Carbon Black < 45µm < 30µm ≈ 10 – 0.1µm < 1µm ≈ 1 – 0.1µm < 0.1µm

Institute Of Refractories Engineers

- Ideal Particle Packing
- Practical Particle Packing
- Mathematical Model

Batching and Mixing Packing of Spheres

Ideal Packing of Spheres (in one plane)

Voids are filled using progressively smaller particles

In this case, the mathematical model used to calculate the quantity and size of progressively smaller particles needed to achieve maximum density assumes that all the particles are spherical and are the same density

Batching and Mixing Raw Material Grain Shape

Batching and Mixing Raw Material Density

100g Zircon Sand

100g Fused Alumina

100g Chamotte

Batching and Mixing Raw Material Density

Batching and Mixing Particle Packing

Batching and Mixing Andreasen Distribution

$$X = 100 \left(\frac{d}{D}\right)^{q}$$

Where

- X = % passing size d
- D = Diameter of largest particle
- q = Variable to control the relative proportion of fine and coarse particles (distribution modulus)

Batching and Mixing Andreasen Distribution Curves

Batching and Mixing Andreasen Distribution Curves

Batching and Mixing Refractory Mix

70
25.0
20.0
25.0
15.0
5.0
10.0
+0.1

Batching and Mixing Simple Mix

Batching and Mixing Manufacture and Installation

Aggregate

Matrix

- There are 100's of different Aggregates available to produce the various mix compositions used.
- There are also 100's of Additives available which impart the required properties to the refractory mix.
- The combination of Aggregates, Additives and Production Process give the required texture to the Refractory mix.

Batching and Mixing Summary

- Natural and synthetic aggregates are crushed and used as graded product.
- Aggregates are blended with fillers and binders in specific proportions to achieve required properties and texture.
- Composition is specifically designed for a given application.
- Production operation could be simple 'dry mixing' or 'wet mixing' to produce mouldables and mortars.

Institute Of Refractories Engineers

Batching and Mixing of Refractories

Thank you for your attention

Dave Pickard