

Institute Of Refractories Engineers

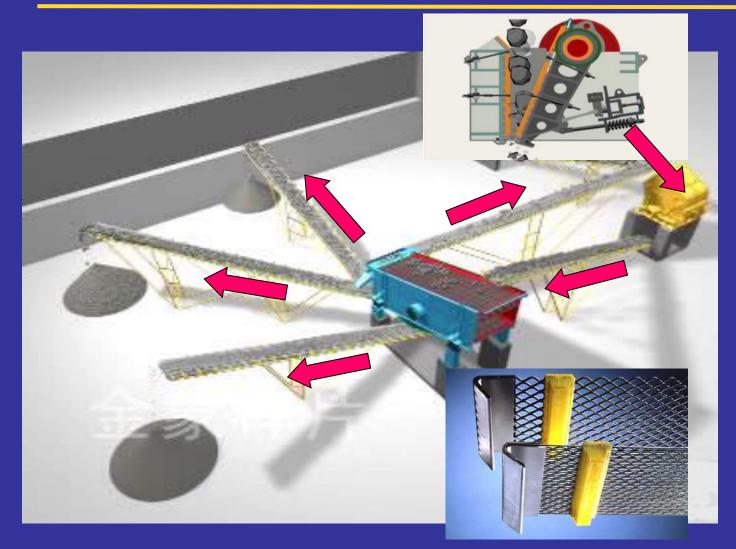
How Refractories Are Put Together

IRE Training Day

November 2018

Dave Pickard

- Aggregate Processing
- Aggregate Characterisation sizes
- Blending
- Density of Aggregates
- Product Production


Castable Example

Institute Of Refractories Engineers

- Crushing and Grading
- Refractory Aggregates
 - Size
 - Shape
 - Density

Batching and Mixing Crushing and Grading

Crushing and Grading

Batching and Mixing Aggregate Size

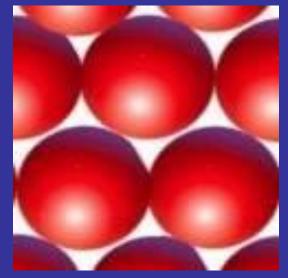
Batching and Mixing Grain Size – Typical Sieve Sizes

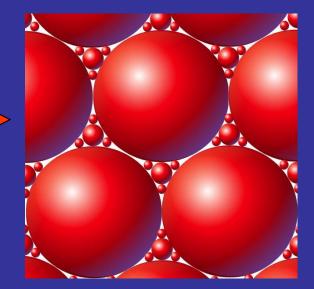
Batching and Mixing Aggregate Characterisation

Sieve Analysis (% retained)

Sieve Size (mm)	Brown Fused Alumina				
	-10.0 + 5.0	-5.0 + 3.0	-3.0 + 1.0	-1.0 + 0.5	-0.5 + 0.0
9.500					
8.000	24.0				
4.000	74.0	45.0			
2.800	2.0	55.0	2.0		
2.000			15.0		
1.000			80.0		
0.500			3.0	98.0	2.0
0.300				2.0	27.0
0.250					11.0
0.125					30.0
0.075					15.0
-0.075					15.0

Batching and Mixing Fillers and Binders


Cement Calcined Alumina Reactive Alumina Mineral Clay Volatilised Silica Carbon Black < 45µm < 30µm ≈ 10 – 0.1µm < 1µm ≈ 1 – 0.1µm < 0.1µm

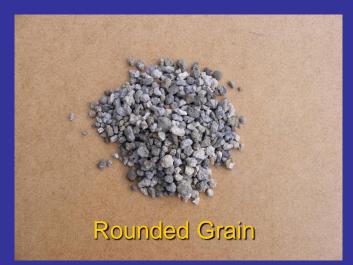

- Ideal Particle Packing
- Practical Particle Packing
- Mathematical Model

Batching and Mixing Packing of Spheres

Voids are filled using progressively smaller particles

Ideal Packing of Spheres (in one plane)

In this case, the mathematical model used to calculate the quantity and size of progressively smaller particles needed to achieve maximum density assumes that all the particles are spherical and are the same density



Batching and Mixing Raw Material Grain Shape

Batching and Mixing Raw Material Density

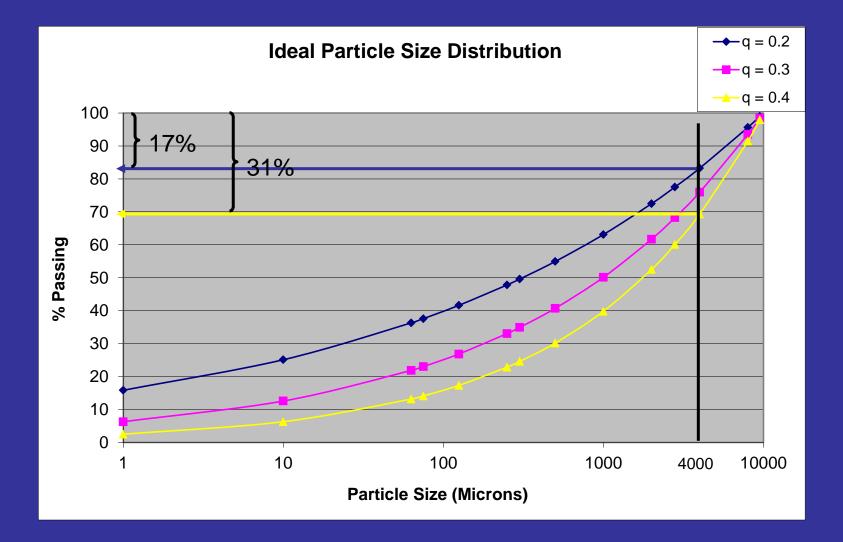
-Dagra 1

100g Fused Alumina

100g Chamotte

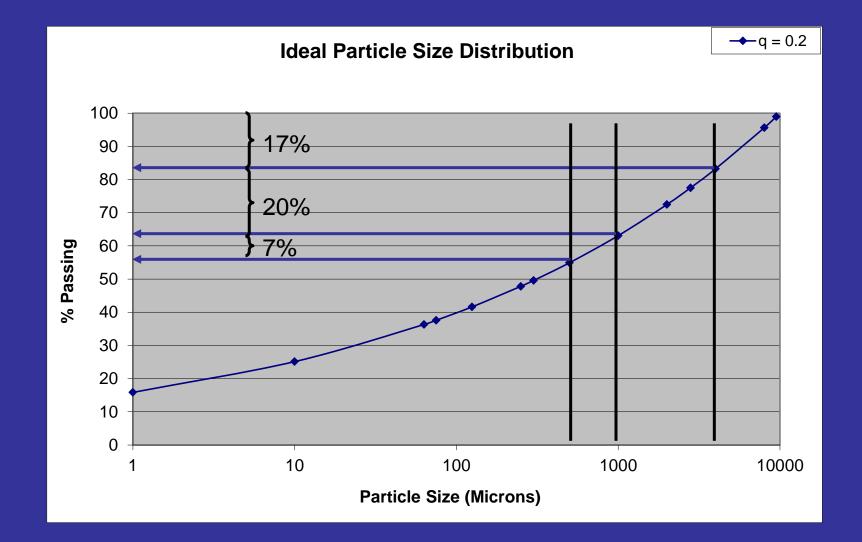
Batching and Mixing Raw Material Density

Batching and Mixing Andreasen Distribution

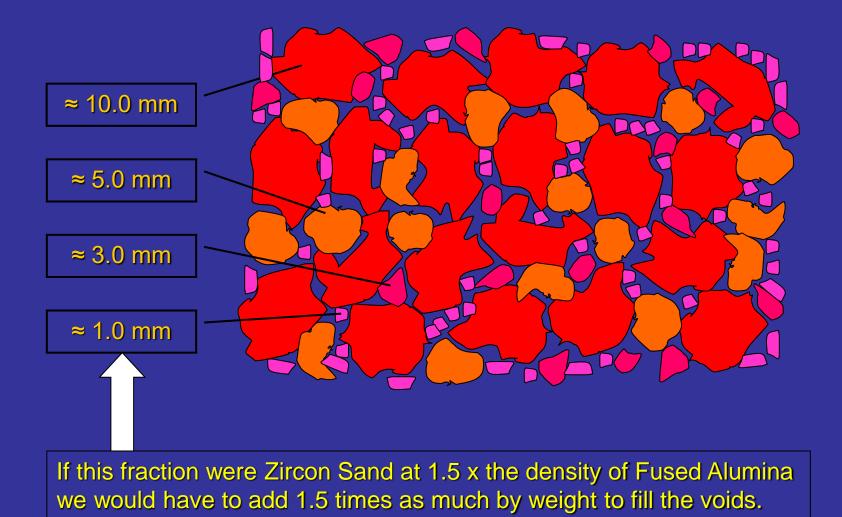

$X = 100 \left(\frac{d}{D}\right)^{q}$

Where

- X = % passing size d
- D = Diameter of largest particle
- q = Variable to control the relative proportion of fine and coarse particles (distribution modulus)



Batching and Mixing Andreasen Distribution Curves

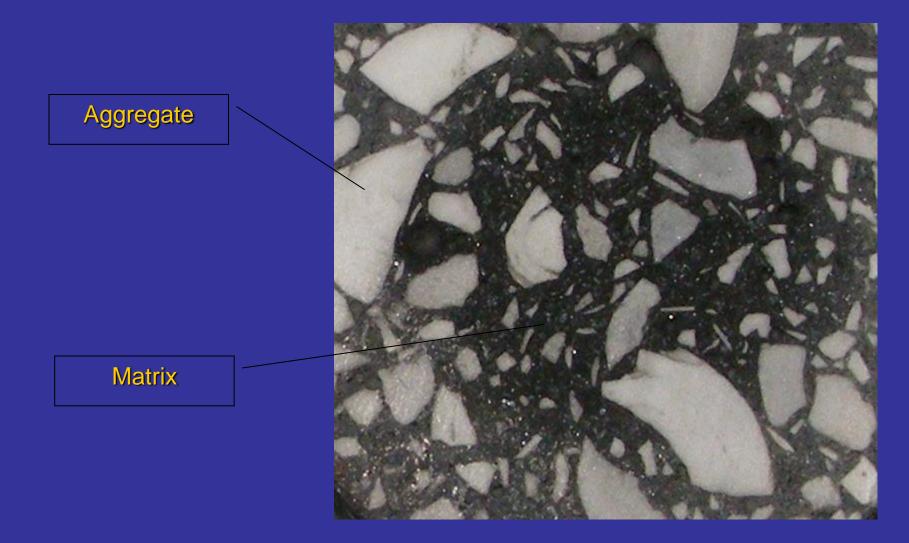


Batching and Mixing Andreasen Distribution Curves

Batching and Mixing Particle Packing

Batching and Mixing Refractory Mix

 Simple Refractory Mix % Fused Alumina -10+5 25.0 **Fused Alumina** 20.0 -5+1 **Fused Alumina** -1+0 25.0 **Calcined Alumina** 15.0 Volatilised Silica 5.0 10.0 Cement Additives +0.1



Batching and Mixing Simple Mix

Batching and Mixing Manufacture and Installation

- There are 100's of different Aggregates available to produce the various mix compositions used.
- There are also 100's of Additives available which impart the required properties to the refractory mix.
- The combination of Aggregates, Additives and Production Process give the required texture to the Refractory mix.

Batching and Mixing Refractory Production

Accurately Weighed Aggregates and Additives

- Natural and synthetic aggregates are crushed and used as graded product.
- Aggregates are blended with fillers and binders in specific proportions to achieve required properties and texture.
- Composition is specifically designed for a given application.
- Production operation could be simple 'dry mixing' or 'wet mixing' to produce mouldables, taphole clay or mortars.

Institute Of Refractories Engineers

Castable Composition, Mixing And Testing

Blast Furnace Runner Castables

- Required Properties
- Composition
- Testing

- Mix at low water additions
 - Reduced porosity
 - Improves strength
 - Helps dry-out
- Resist erosion of molten iron
- Resist attack by molten slag

Blast Furnace Runner Castable Composition

Alumina -10+5mm Alumina -5+3mm Alumina -3+1mm Alumina -1+0.5mm Alumina -0.5mm Silicon Carbide -3+1mm Silicon Carbide -1+0.5mm Silicon Carbide -75µm Silicon Carbide -10µ Calcined Alumina Reactive Alumina

High Alumina Cement

Carbon

Metallic Powders AI / Si / B₄C

Volatilised Silica

Additives

Plastic Fibres

50 to 60% of the mix

20 to 30% of the mix

≈ 10% of the mix

= 2% of the mix \leq 2.5% of the mix

 \leq 4% of the mix

< 2% of the mix < 0.5% of the mix ≈ 0.05% of the mix Main body of the castable

- Strength
- Erosion resistance

Body & Matrix of the castable

• Slag resistance

Matrix of the castable

Strength

Initial Strength Iron/Slag resistance Drying / Strength / Ox resist' Flow & Strength Wetting / Setting Drying

Runner Castables Testing

Runner Castables Mixing

Runner Castables Flow Test

Runner Castables Flow Test

Institute Of Refractories Engineers

How Refractories Are Put Together

Trough Castables

Thank you for your attention

Dave Pickard