

Online Training Event 2020 Low Thermal Mass Linings

- 1. What is Thermal Mass
- 2. Refractory Fibre vs AES Fibre
- 3. Fibre Production
- 4. Product types
- 5. Applications

What is Thermal Mass

- Energy is needed to heat up a material from ambient to service temperatures.
 - Both for product in process and materials in the furnace/kiln etc
 - In addition to energy losses
 - In intermittent (batch) process, this can be a significant cost
- Specific Heat Capacity Energy needed to heat 1kg of material by 1°C
 - Most refractories have a Spec Heat Capacity of 1000-1300J/kg/°C
 - · Light weight linings need less energy to heat them
 - More rapid heating for the same burner reduced downtime/cycle time

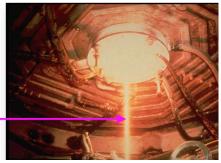
Refractory Fibre

- Produced from alumina and silica, sometimes with zirconia addition for high temperature grades
 - 1250°C grade
 - ~52-58% SiO₂
 - ~42-47% Al₂O₃
 - 1400°C grade
 - ~52-56% SiO₂
 - ~28-32% Al₂O₃
 - ~14-18% ZrO₂
- Form cristobalite in service (depending on temperature)
- Respirable dusts are considered hazardous

AES Fibre

- Alkaline Earth Silicate Fibres
- Body Soluble Fibres, Low biopersistance
- Different compositions from different suppliers
 - Based on silica with lime, magnesia and other oxides
- Forms cristobalite in service
- Classification temp to 1300 °C

Production Process


- Raw Materials
- Blending
- Melting
- Melt Stream
- Fiberisation
- Product production

Melting

- Melt at 1700-2000°C
- Submerged Electrode Furnace
- Continuous tapping in a thin stream of molten oxide

Melt Stream

Fiberisation

- Blowing
 - Compressed air blown across melt stream
- Spinning
 - Stream poured onto spinning disc
 - Both method break up stream into droplets which are elongated to fibre shape

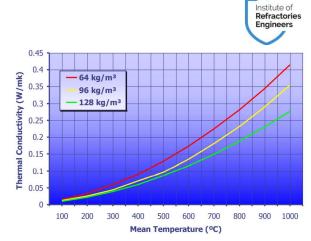
Spun vs Blow Fibre

- Spun Fibre
 - Larger Diameter $3-4\mu m$
 - Longer Length
 - Higher strength and mechanical resilience
- Blown Fibre
 - Finer Diameter ~2μm
 - Shorter Lengths
 - Better for wet production of product

Blanket Production

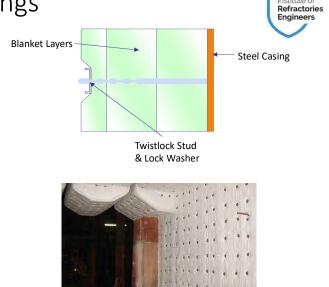
- Fibre production and collection
- Needling
- Cutting to width and length
- Roll up
- Package

Blanket Properties



- Grade or Chemistry
- Classification Temperature e.g. 1250 °C, 1400 °C
- Thickness from 6mm to 50mm
- Can be blown or spun, dependent upon chemistry and grade
- No binder no organic compoounds
- Flexible
- Lightweight
- Easy to cut
- Standard sized rolls

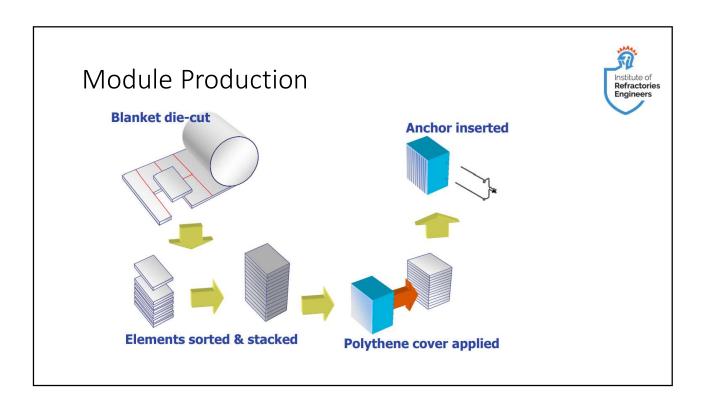
Blanket - Density


- Standard densities are 64, 96 and 128 kg/m³
- Strength increases with density
- Thermal conductivity decreased with density
 - Denser fibre is MORE thermally efficient
- · Example of effect of density
 - 1000 °C Hot Face
 - 150mm fibre
 - 25 °C Ambient

Blanket Density	64	96	128
Cold Face Temp °C	102	94	81

Blanket – Layered Linings

- Boilers, Ducts
- Kilns and furnaces
- Low gas velocity
- No abrasive dusts
- Backup insulation

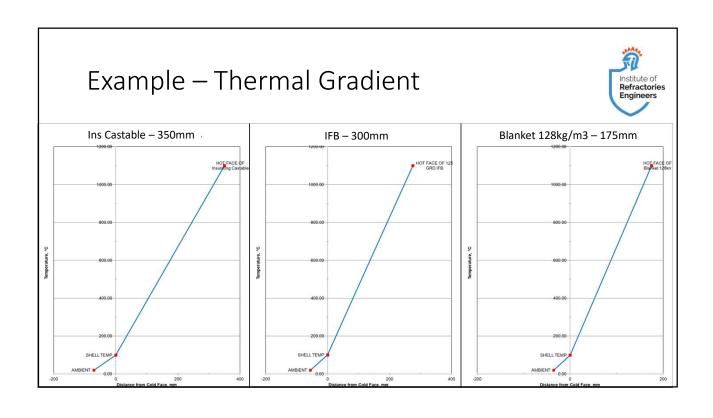


Modules

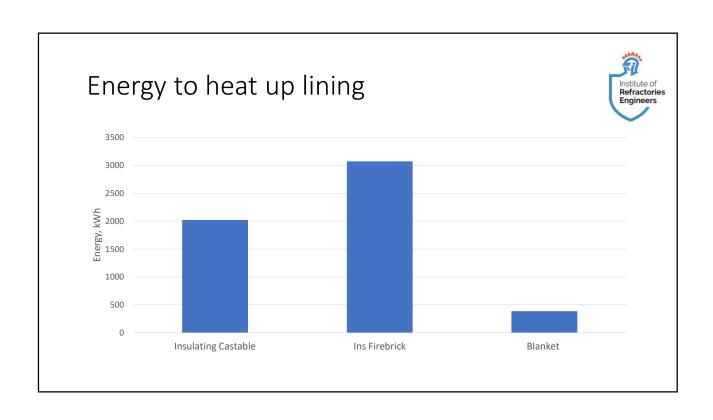
- Dense blocks of high temperature fibre insulation
- Manufactured using die-cut pieces or folds of blanket
- Supplied with or without internal metallic hardware (anchor)
- Developed for industrial furnace linings
- Anchorage located at cold face
- Higher gas velocity resistance

Module Applications

- Petrochemical
 - Steam crackers and heaters
 - Boiler
 - Furnaces
- Metallurgy
 - Reheat Furnaces
 - Heat Treatment
 - Ladle Lids
- Ceramic Kilns
- Power Generation



Energy Saving and Energy Storage



Example – Insulating Castable vs ins Firebrick vs Fibre Blanket

- 1100°C Hot Face
- 20°C Ambient, Still air, emissivity 0.8
- Shell Temp to be <100°C

Example					
	Insulating Castable	Ins Firebrick	Blanket		
Density, kg/m3	350	650	128		
Thermal Cond At 200°C At 1000°C	0.29 0.33	0.18 0.30	0.03 0.27		
Spec Heat Cap J/kg/°C	1100	1050	1150		
Thickness mm	350	300	175		
Hot Face Temp°C	99	100	99		
Heat loss at steady state W/m2	852	873	857		
Lining Weight/m2	122	195	22.5		
Energy to heat up 50m2 area MJ kWh	7277 2021	11057 3071	1391 386		

Thank you

Sam Franklin

Eagle Refractories Limited

sam.franklin@eagle-refractories.com