

Institute Of Refractories Engineers

Unshaped Materials - Monolithics

Refractories Training Day 25th September 2008

Steve Wright

Institute Of Refractories Engineers

10:55 -	Unshaped Materials			
11:30	Definition of castable, self flow, gunning, shotcrete			
(35 mins)	etc			
	Storage/Shelf Life			
	Effect of water on properties			
Application temp/setting behaviour				
	Anchoring			
	Fibres – steel and plastic			
	Dry-out			
	Pre-cast			

Unshaped Materials - Monolithics

What is a monolithic and why is it used ?

Definition monolith : a single block of stone / a person or thing like a monolith In being massive, immovable or solidly uniform - monolithic

In refractory terms its really: A refractory aggregate different aggregates /different fractions A refractory binder, additives which can be simple or relatively complex Packaging for transport to site 25KgBOP / 200 -100Kg Bulk Bags Mixing medium such as water A form or space in which to place it As necessary, some method of ensuring its retention –anchorage Method of placing Curing Heatingand into service

General types of Monolithics

- •Refractory monolithics can be
- •Castables
 - •Standard
 - •Conventional
 - •Low Cement Vibrocast / Freeflow / Pumpable
 - •No Cement
 - Insulating
- •Gunning grades
 - •Conventional
 - Advanced Low Cement
 - Insulating
- •Shotcretes
 - •Full Wet Low Cement
- Rammings
 - •Plastic
 - •Granular
- •Cements –(mortars)

Monolithics

What is a monolithic and why is it used?

Can give exceptional performance in difficult to install areas

Advantages of monolithic

High strength Tailored to meet specific requirements –eg chemical, strength, light weight, etc Dry / minimal joints Easy to repair Large high quality and relatively fast installations with such as shotcrete Special requirements eg Precast shapes, blasters , shrouds etc

Disadvantages

Difficult to Setup / install Dry Demolish

Monolithics

What is a monolithic and why is it used ? Monolithic

Example – Castable

Planning /Preparation Anchoring Shuttering Homogenisation Dosing Mixing Transport Pouring Vibration Setting /Hardening Curing Drying Heating-Up

Monolithics Manufacture

Different Ingredients

Silicon Carbide 0.5-1mm (98%)

BFA 5-10mm

Different Products

Additions of Fibres or Needles to Monolithics

Fine Organic fibres such as polypropolene can be added to monolithics to help form a micrporous network in the installed material to aid in moisture removal on Heating up

Additions of Fibres or Needles to Monolithics

Metallic needles can be added to monolithics for distribution through the finished panels to help "knit" the structure together, limiting crack formation and break-up These metallics are of different qualities with some having better in-service characteristics than others eg thermal cycling, chemical and ultimate temperature resistance.

Room Temperature

After Heating To 1200C

Monolithics Manufacture

What is a monolithic and why is it used ? ..Products can be evolved for specific applications

Alkali pot tests- to check reactions and potentially modify products to perform better

Common Types of Monolithics

	Castables	Sprayed Castables	Gunmixes
7	Standard Grade mixed,placed / rodded		
	Standard Coarse Grade mixed, placed under vibration behind shutters		Standard gunmixes mixed with water at
	Low Cement mixed - critical water control, placed under vibration behind shutters	Shotcrete mixed - critical water control, special LC castable pumped to nozzle (already mixed), combined with accelerator, applied with airstream, sprayed onto area and quickly sets	nozzle, applied with airstream
	Free Flow & Cement Free mixed - critical water control, placement by pouring / pumping behind shutters (no vibration –free flow)		Low Cement gunmix's tighter water control, longer mixing at nozzle, applied with airstream

Technical Evolution

Common Types of Castable Monolithics & Their Characteristics

Standard Grade relatively high cement content	Easy to mix / place	Moderate properties	Requires curing	High cem content necessary in abrasive environments where <150 C achieved, no ceram bond, ie back end of chain zones
Conventional Coarse Grade preferably vibro cast	Easy to mix / place	Better properties	Requires curing	Difficult to vibration-cast thin sections effectively on site
Low Cement must be vibro cast behind shutters, water addn critical	Must use "Hi- Shear" mixer for best water distribution	Best properties	Setting - longer in winter.	Offers high strength through the temperature range Properties very dependant on water addn, how well mixed and placed
Free Flow Low Cement must not vibrate. Placement by pouring / pumping. Water critical	As above + tightness and support of shutters critical	Best properties	Setting - longer in winter.	As above + Big volumes can be pumped. Good option for thin sections. Shutters- accurate and secure. SS needles impede flow. Extremely sensitive to setting in winter (due to fine additions) - keep area warm.
Shotcrete pumpable LC castable, applied thru shotcrete method by expert team	Specialised equipment and dedicated team required	Best properties	Fast to install, fast setting time	High strength LC castable that can be pumped and sprayed quickly in big volumes (max 8t). Fast controlled setting (use of accelerator) No complex formwork, very clean working environment. SS needles can be incorporated

Refractory monolithics can beCastables- Examples

Large Precast Units

Roofs /Sidewalls

Smaller Precast Pieces

•Technical Castables such as Low Cement, Freeflow Pumpable etc

These type of products are quite complex and have several fine additive Additions which are crucial to the optimal performance *Increased water additions have a dramatic effect by decreasing strength*

On –site installation is therefore very important to get the best properties and Performance in services.

Mixing must be with the use of a high shear mixer with a positive mixing action Mixing time with this kind of equipment is generally 4 -6 minutes per batch At the recommended water content (usually 5-7% for LC types)

Large High Shear Mixer with measured water being added

method by expert team

Common Types of Projected Monolithics Gunnings and Shotcrete

I.R.E.			
Projection type	Chara	acteristics	Specific Benefits / Drawbacks
Standard Grade Gunning relatively high cement content with clay addition	Water / aggregate mix at nozzle	Moderate properties	High cem content necessary in abrasive environments where <150C achieved, no ceram bond, ie back end of chain zones
Low Cement Gunning Low Cement technology for improved properties	Water / aggregate longer mix in elongated nozzle	Better properties	Offers high strength through the temperature range (>150C). Properties very dependent on water addn, and how well mixed and placed.
Full Wet Shotcrete pumpable LC castable, applied through shotcrete	Specialised equipment and dedicated team	Best properties	High strength LC castable that can be pumped and sprayed quickly in big volumes (max 8t). Fast controlled curing (use of accelerator) No complex formwork, very

NB Shotcrete appears in both categories as it has the properties of an LC castable combined with the versatility of a gunning installation (but cleaner). In general, when both types are available, LC gunning would be used for the smaller application eg <8t and Shotcreting for larger installations and faster setting.

clean working environment. SS needles can

be incorporated

required

What is a monolithic and why is it used ?•Refractory monolithics can be•Gunning grades

MANITOU

Banner

What is a monolithic and why is it used?

Refractory monolithics can beShotcretes

1.R.

Site Set Up

Loading mixer / Pump unit with Bulk LC pumpable Spray castable

Applying inside a vessel

Mouldables and Rammings

These are manufactured incorporating a binder and supplied to site in pre-formed slabs for installation by pneumatic ramming techniques.

Rammings supplied granular in bags. No additional water is required on site, installation by pneumatic methods

The binder is usually of a chemical type which initially starts to cure on exposure to the atmosphere and as such, plastics are usually termed to be "air setting".

The aggregate / binder mixes (and type of bond developed) determine the product type and its characteristics

Phosphate bonded plastics tend to exhibit higher strength and abrasion resistance than conventional grades.

Mouldable type	Characteristics		Specific Benefits / Drawbacks
Conventional Mouldables	Supplied ready to use	Moderate properties	Factory prepared ,ready to use on site / air setting, good thermal shock. Long time to install large quants- tend to shrink if left unfired.
·	Less sensitive to firing in- no chemically combined water to remove Shorter shelf life.		
High Grade Mouldables	Supplied ready to use	Best properties	Useful for patch repairs and for thin sections
			As above + yield superior properties

Generally, Mouldables tend to exhibit reasonable strength and good thermal shock resistance. The High Grade materials exhibit further improved strength and good abrasion resistance.

Lining Configuration, Anchorage, Panelisation and Expansion Allowance

1/3 2/3 Perceived typical But can vary by application

IC9 Med Wt Safety &Security

Lining configuration Determined by Local conditions such as : Heat Retention Chemical and Abrasion Resistance

Anchorage and panelisation/ expansion Determined on case by case basis Taking into consideration, environment, history, and safety

Metallic and Ceramic anchors

Lining Configuration, Anchorage, Panelisation and Expansion Allowance

Roof being cast in sections and one year later on inspection

Lining Configuration, Anchorage, Panelisation and Expansion Allowance

Setting, Curing and Preheating

Setting is determined by the type of product and the ambient temperatures

At a typical 20C an initial set would be expected in 4-6 hours

In **hotter climates** setting time can be dramatically reduced due to the heat accelerating the bond. This can have consequences for the installation and retarders should be considered to be added at the suppliers factory with a minimal fine tune on site or wholly on-site under careful supervision

Conversely in **colder climes** the opposite is true.

The more technical low cement products can exhibit very long set times, even 1 -2 shifts Which can have serious consequences for the installation programme In these circumstances, retarder at the factory should be cut back and consideration should be given to the supply of accelerants for site addition

With extremes of temperature, site materials should be kept in controlled temperature Warehouses and site water temperatue controlled

Setting, Curing and Preheating

Curing should be at least 12 hours and air drying similar Theoretically castables should not be allowed to prematurely dry out in the first 12 hours and the surafce should be kept moist. See manufacturers data sheets

This is best practice but with the exception of floors, it rarely happens on site

Thicker section jobs should be planned early in repair to allow maximum curing /air drying time

Where and when practicable, shells should be drilled and monolithic vented during installation. Organic fibres are added which also aid moisture removal.

Very dense monolithics give good performance but are the most difficult to dry out (Low porosity / permeability)

No Preheating curve is given as generally this follows custom and practice Or is discussed and agreed on a case by case basis

Different schools of thought exist for drying out and Preheating monolithics

1 Traditional

Where possible, preheating should be done to an agreed regime and allowing good air movement across the face Preheating regimes will vary but should consist of slow ramping- 20-25C/hr and holds at 110 and 350 visibly monitoring for high steam pressure and if so hold until it subsides

2 Modern

Ramping at a constant temperature from ambient, theoretically building heat up slowly at the hot face and driving moisture back through at a constant rate with no holds

In either Preheating situation it is extremely important to visually monitor the application and if excessive steaming or plumes are noted then the regime should be held until it subsides and then progressed with caution

Installations can be long and costly affairs taking place over long periods of time and consequently heating up should not be rushed.

Specialised companies are available for preheating on site for small or large project applications

Generally, > 80% of moisture is removed by 400C equilibrium.

Storage See manufacturers instructions

Generally supplied products should be kept under cover in a clean, dry Well ventilated storage area

Manufacturers can modify the packaging spec liasing with the customer, especially for international destinations, however normally, such as 25Kg valve packed bags of monolithic stored in the above, can have a life of 6-12 months duration dependent on type

Thank You for your time And consideration

