

Institute of Refractories Engineers

Refractory Data Sheets and Specifications

'The Customer's Perspective'

Training Day 2012

Esther Coupland – TataSteel, Scunthorpe

Technical Data Sheets (1)

USED FOR:

- New application
- New product proposed by supplier
- Existing product not performing
- Existing product, better value product required

Technical Data Sheets (2)

- Useful for initial comparison of properties against existing product or company standard.
- May be called Data Sheet, Product Information, Technical Information etc.
- Not confidential
- Not a guarantee of material properties, typical data only.
- May cover a group of products.
- Not a controlled document

Typical Technical Data Sheet Format

Product Name: Mag96/C12 Brief Description: Magnesia cart Image: Construct of the second seco	TECHNICAL DA	adles. cal Ana	EET alysis	SH2 6BX	
Product Name: Mag96/C12 Brief Description: Magnesia carb As received Bulk density Kg Cold crushing strength M Apparent porosity % Permanent linear change % Al2O3 % SiO2 % Fe2O3 % CaO %	TECHNICAL DA	adles. cal Ana	EE I		
Product Name: Mag96/C12 Brief Description: Magnesia cart I As received Bulk density Cold crushing strength Apparent porosity Residual carbon Permanent linear change SiO2 Fe2O3 CaO MgO	pon brick, for steel I Unit Typi g/m3 IN/m2	adles. cal Ana	alysis		
Brief Description: Magnesia cart As received I Bulk density Ki Cold crushing strength M Apparent porosity % Residual carbon % Permanent linear change % Al2O3 % SiO2 % Fe2O3 % QaO %	oon brick, for steel I Unit Typi g/m3 IN/m2	adles. cal Ana	alysis		
As received Bulk density Kr Cold crushing strength M Apparent porosity % Residual carbon % Permanent linear change % Al2O3 % SiO2 % Fe2O3 % MgO %	Unit Typi g/m3 IN/m2		alysis		
As received Bulk density Cold crushing strength Apparent porosity Residual carbon Permanent linear change Al2O3 SiO2 Fe2O3 CaO MgO	g/m3 IN/m2				
Bulk densityKiCold crushing strengthMApparent porosity%Residual carbon%Permanent linear change%Al2O3%SiO2%Fe2O3%CaO%MgO%	g/m3 IN/m2				
Cold crushing strengtnImApparent porosity%Residual carbon%Permanent linear change%Al2O3%SiO2%Fe2O3%CaO%MgO%	IN/m2				
Apparent porosity%Residual carbon%Permanent linear change%Al2O3%SiO2%Fe2O3%CaO%MgO%					
Residual carbon%Permanent linear change%Al2O3%SiO2%Fe2O3%CaO%MgO%)))				
Permanent linear change%Al2O3%SiO2%Fe2O3%CaO%MgO%)				
Al2O3 % SiO2 % Fe2O3 % CaO % MgO %)				
SiO2 % Fe2O3 % CaO % MgO %)				
Fe2O3 % CaO % MgO %					
CaO % MgO %)				
MgO %)				
ů –)				
Refractory materials contain raw materiate the right is reserved to change the infor	ial w hich are subject to	o natural data she	variation. Th	nerefore	
Date: 27/8/2012					
I					
l					

Product Definitions (1)

- Guarantee of material properties (quality and consistency)
- Prepared by refractory supplier
- May form part of contract between supplier and customer 'the LEGAL document'
- Forms part of quality system for supplier and customer. Controlled document. Revisions must be communicated to customer, and quality system updated.
- 'Provisional' (where there is insufficient test data) or 'Full'
- Specific Product Definition for each product (possibly each size).
- Confidential

Product Definitions (2)

Should include:

- The title 'Product Definition'
- Typical and limit values (minimum, maximum or both) for critical properties
- Supplementary properties
- Revision number
- Plant of Origin

Product Definitions (3)

TYPICAL VALUES

• Usually determined by manufacturer's average of process test data.

LIMIT VALUES

• Minimum, maximum or both

• Usually determined using statistical data from manufacturer's process test data (standard deviations or T values).

Typical Product Definition

Refcon Refracte	1 Main Road Sheffield SH2 6BX							
Confidential								
Product Name: Mag96/C12		1 11						
Brief Description: Magnesia	Carbon brick, for steel	Tunical	Danga					
Critical Proportion	Unit	турісат	Range					
As received								
Rulk density	Ka/m3		0 Min					
	Ng/III3		0 Willi					
Coked 2 hours 1000oC								
Apparent porosity	%) Max					
Residual carbon	%		0 Min					
Permanent linear change	%		to 0.8					
r ennanent intear enange	,,,		10 0.0					
AI2O3	%		Max					
SiO2	%		Max					
Fe2O3	%		Max					
CaO	%		Max					
MqO	%		5 Min					
5								
Supplimentary Properties								
As received								
Cold crushing strength	MN/m2		Min					
Apparent porosity	%		Max					
Coked 2 hours 1000oC								
Bulk Density	Kg/m3		0 Min					
Cold crushing strength	MN/m2		Min					
Plant of Origin: Sheffield								
Povision Number: 0			Droparad by: A	Smith				
			Chockod by: A					
Date. 21/0/2012	2110/2012 Checked by: J Jones							

RAGB Guidelines

RAGB

- Guidelines on information required on a Product Definition
- Requested information specific to refractory type.
- 86 material types, e.g. Fired Magnesia Brick, Refractory Mortar, Ladle and Tundish Wellfillers
- Information on how to prepare a Product Definition

Chemical Properties

Chemistry Basis

- 'As received' (chemical components add up to approx 100 % including loss on ignition)
- 'Ignited' (chemical components add up to 100% without loss on ignition)
- Loss on ignition can include water, carbon, sulphur and other volatile (or oxidisable) components which are lost from the sample at <1000oC.

Product Definition Drawings

Product Definition Drawings

- For complex Shapes
- Include tolerances for critical dimensions
- Drawing number
- Revision number
- Controlled document (part of quality system of manufacturer and supplier.
- Cross referenced to material Product Definitions

Test Certificates

TEST CERTIFICATES:

- TataSteel only request Test Certificates if deemed necessary (material type, quality issues e.t.c.)
- Required for every batch
- Tests required for Critical Properties
- Category 1 properties (Control Properties) tested for each batch
- Category 2 properties (Supplementary Properties) tested less frequently (due to cost/complexity of testing)
- If the Cat. 1 properties are in specification the Cat 2. Properties should be also!!!

Section Summary

• <u>Technical Data Sheet</u> – useful for initial information and comparison of properties.

• <u>Product Definition</u> – controlled document which guarantees material properties.

Institute of Refractories Engineers

Data Sheets & Specifications

'Application and Validity'

M. Frith

Discussion Areas

- 'Fitness for Purpose'
- Bespoke Specifications
- Identifying Errors in Specification Sheets

First Question:

What does 'fitness for purpose' mean?

 'Something that is fit for purpose when sold' MacMillan Dictionary

- 'Appropriate and of a necessary standard for its intended use' Wiki
- 'Fitness for purpose equates quality with the fulfilment of a specification or stated outcomes'

www.qualityresearchinternational.com

- Legal: When you buy goods you enter into a contract with the seller of those goods. Under the Sale of Goods Act 1979 goods must be:
 - 'as described',
 - 'of satisfactory quality', and
 - 'fit for purpose' this means both their everyday purpose, and also any specific purpose that you agreed with the seller

Second Question:

If a product meets specification does it automatically mean it is fit for the intended purpose?

Not necessarily.....

Third Question: Can 'fitness for purpose' be translated as a specification data set?

- Manufacturing assesses a product against it's intended purpose?
- Marketing purpose is determined by the customer need?

POTENTIAL requirement for 'Bespoke' specification to ensure that supplier's specification contains all necessary elements to deliver required operational performance

Last Question: <u>Who's responsibility is it to to specify</u>

requirements required for 'fitness for purpose'?

- The Supplier?
- The Customer?
- The OEM?

'Bespoke Specifications'

- On occasion, the customer may indicate a product requirement which requires a dataset different from the standard product specification in order for the product to be considered 'fit for purpose'
- The specification may (as is the norm in good contract practice) be included as part of the supply contract

'Bespoke Specifications'

Changes from standard:

- Typical/Limit values
- Product Description
- Inclusion of 'supplementary' properties as controls: eg:
 - Creep
 - RUL
 - HMOR
- Inclusion of special 'non-standard' testing: eg:
 - Slag resistance
 - Oxidation resistance
 - CO resistance

Example

Product Description	Fired Andalusite based Solid Brick					Product Description High Temperature fired Andalusite brick with white tabular at				ite tabular alumina.	
CONTROL PROPERTIES						Application	Working lining	g of Torpedo Lac	lle and working lin	ing of Hot Metal Ladle/ Transfer Ladle –	
Chemical Analysis	Chemical Analysis (Calcined Basis) Unit By wt Value Typical Limit		Value	Value Test Method			Various Other applications.				
(Calcined Basis)				CONTROL PROPERTIES							
Al ₂ O ₃	%	L		_	By XRF	Chemical Analysis	Unit By wt		Value	Test Method	
Fe ₂ O ₃	%				D y Au	(Calcined Basis)	on by m	-	Lineit		
Physical Properties	Unit					(outointou Buolo)		l ypical	Limit		
Bulk Density	Kg/m ³				ISO 5017 : 1998	Al ₂ O ₃	%		≥		
Apparent porosity	Vol. %				ISO 5017 : 1998	SiO ₂	%		<		
CCS	N/mm²				ISO 10059-2 : 2003	EeoOo	%		,	By XRE – Powder Pallet Method	
SUPPLIMENTORY PROPERTIES						TiO	//		<u> </u>	By Arti i Fonder Functional	
SiO ₂	%					1102	70	⊢ –	<u> </u>		
TiO ₂	°C				Dy XIVI	Alkalis	%	L _	<		
PLC at 1600°C / 5hrs	%			- 20	ISO 2478 : 1987 (L = V/3)	Physical Properties	Unit				
Creep (Load = 0.2 MPa, 20-50 hrs	%				ISO 3187 : 1989	Bulk Density	Kg/m ³		≥	ISO 5017 : 1998	
at 1400°C)						Apparent porosity	Vol. %		<	ISO 5017 : 1998	
INFORMATIVE PROPERTIES						CCS	N/mm ²			ISO 10059-2 · 2003	
Thermal Expansion at 1000°C	%	_		•	IS 1528 (Part 1) : 1991			<u> </u>	<u> </u>		
Thermal Conductivity	₩/mK			•	ISO 8894-1 : 1987	PLC at 1600°C/2hrs. (Min/Max)	%		-0.3	ISO 2478 : 1987 (L = V/3)	
Control Dimension AQL 6.5% for critical dimensions (ISO 5022 Table – 3)				Control Dimension	AQL 4 % for all dimensions (ISO 5022 Table – 3)						
Sampling/Acceptance ISO 5022, Table 4 or Table 10(AQL4%)					Sampling/Acceptance	ISO 5022, Table 4 or Table 10(AQL4%) for all control properties					

Non- Standard

Standard

No indication of which properties constitute the 'control properties'

Generally:

- 3 Chemical Properties
- 3 Physical Properties

DESCRIPTION:

High-fired direct bonded magnesia-chrome with electrofused magnesia-chrome and high purity magnesia. High thermal shock and slag resistance.

CHEMICAL ANALYSIS:

(Magnesia ba	asis)		Specification			
Magnesia	(MgO)	%	% min.			
Chrome oxide	(Cr_2O_3)	%	% min.			
Silica	(SiO ₂)	%	% max.			
Lime	(CaO)	%	% max.			
Iron oxide	(Fe ₂ O ₃)	%	% max.			
Alumina	(AI_2O_3)	%	% max.			

These data are based on average results of quality control tests and are not for guarantee Purpose.

PHYSICAL PROPERTIES:

APPLICATIONS:

RH: Snorkel

*This material does not content Crystalline Silica. (Content 0%)

Revision date: 2-08-08

Specification or data sheet?

The use of the phrase: 'These data are based on average results of quality' invalidates the data as a specification.

Revision status!

The document gives a revision date but not an issue number. To ensure data integrity and continuity a revision issue number should be given such as 'Product xyz Rev3.'

1T74

<u>Product Description:</u> (classification, main components and nature, additives, bonding, additional treatment) Magnesia-chromite brick of group MCr60 based on rebonded fused grain with low iron content, ceramic bond

Application: Mainly for	degassing	vesseis						
CRITICAL PROPERTIES	 controlled properties max. 3 chemical components and 3 physical properties 							
Chemical Analysis	* Unit by wt	Mea	n Value	Sigma	Individual Value		llue	Test Method
		Typical	Guaranteed		Ti	Ts	AQL	-
SiO2	%							XRF
Fe2O3	%							DIN 51001
AI2O3	%							
Cr2O3	%							
CaO	%							
MgOdiff	%					,	,	
Physical Properties	Unit							
Bulk Density	g/cm³						L.,	EN 993-1
Apparent Porosity	%					, i		EN 993-1
CCS	N/mm ²							EN 993-5

Ts MgO?

➤ Should be Ti !

> Would this affect a potential claim?

Refcon Refracto	1 Main Road Sheffield			
			J	
	PRODUC		N	
Broduct Name: Mag07/C12	COI	moentia		
Rief Description: Magnesia	arbon brick for E	۸ ۲		
Dhei Description. Magnesia (Typical	Ti	Τς
Critical Properties	onne	Typical		13
As received				
Bulk density	Ka/m3			
Durk density	itg/iii0			
Coked 2 hours 1000oC				
Apparent porosity	0/			
Residual carbon	70 0/			
Residual carbon	70 0/.			
Fernanent intear change	70			
A12O3	0/_			
SiO2	70 0/.			
5102	70 0/			
Fe2O3	70 0/			
	% 0/			
MgO	%			
Supplimentary Properties				
As received				
Cold crushing strength	MN/m2			
Apparent porosity	%			
Coked 2 hours 1000oC			_	_
Bulk Density	Kg/m3			_~~~
Cold crushing strength	MN/m2			
Plant of Origin: (
Revision Number: 0			Prenared by:	
Date: 27/8/2012			Checked by:	
Date. 2110/2012				

- > Is limit data appropriate?
- > Is the range too wide?
- > Is the typical skewed?
- > What would be your response?

Section Summary

Fitness for purpose:

Consider requirements of the application and suitability of the data in terms of 'guaranteeing' performance requirements. Also 'Responsibility'

Bespoke Specifications:

Usefulness for both supplier and customer. Dialogue required to work effectively.

Specification Errors:

Learn to recognise common errors to ensure coverage in event of performance issues.