

Institute of Refractories Engineers

WEAR OF ALUMINA REFRACTORIES

IRE Training Day 31 October 2013

Sheffield

Sam Franklin

Contents

- 1. Basic Principals
- 2. Thermal Wear
- 3. Mechanical Wear
- 4. Chemical Attack
- 5. Combinations

Wear Zones

- Different Conditions in different zones
 - Impact zones
 - High temp zones
 - Chemical attack zones
- Optimise refractories to the conditions
- What if operation 'shifts the zones'?

Thermal Wear

- Excess Temperature
 - Melting
 - Softening
- Thermal Shock
 - Rapid Heating and Cooling

Excess Temperature

- Melting
- Softening
- Slumping
- Shrinkage
- Flame impingement

Thermal Shock

- Consider a brick heated on one face.
- The heated face 'wants' to expand
 - It is restrained by the colder part
 - There are stresses in the brick

Thermal Shock

- Rapid heating or cooling leads to high temperature gradients
- Thermal expansion
 creates internal stresses
- Cracking if these stresses exceed strength

Chemical Wear

- Slag Attack
- Alkali Attack
- CO, H₂, Cl₂
- Acid

Slag Attack

- Slag dissolves oxide refractories
- Slag wets oxide refractories and penetrates the material
- Slag affected zone has different expansion and thermal properties and may crack away

Porosity and Slag Attack

- Refractories contain voids
 - Spaces between grains
- Oxide slags are chemically similar to refractories
- Liquid slag 'wets' surface and soaks into pores
- Attack from inside not just surface

Slag Chemistry

- Acid Slags have high SiO₂ content
- Basic Slags have high CaO content
- Basic slags disolve silica containing refractories
- Acid slags disolve basic refractories
- What about alumina?

Slag Temperature

- Higher temperature
 - Makes slag more fluid
 - Greater flow rates
 - Slag penetrates further into brick
 - Slag has greater capacity to dissolve refractory

Alkali Attack

 Chemical attack by Sodium and Potassium Compounds – K₂O, Na₂O

CO Attack

- Chemical Reaction $2CO \rightarrow C + CO_2$
- Deposition onto impurities, especially iron and nickel
- Deposits solid carbon
- Can disrupt parent material causing cracks and crumbling
- Only occurs in temp range 300-800°C

Hydrogen Attack

- Chemical attack
 - Reaction with silica component of refractory SiO₂ + H₂ → SiO (gas) + H₂O
 - Can destroy refractory leaving a weak powder behind
 - Occurs above ~800°C
 - Affects silica containing materials

Mechanical Wear

- Impact
- Abrasion
- Erosion
- Anchor Failure

Impact Damage

- Impact from Maintenance
 Equipment
- Inpact from Charging

Erosion

- Liquid Flow
- Slurry flow

Abrasion

- Solid-Solid Contact
- Dust Laden Gases

Build Up

- 'Sticky' materials can adhere to refractory walls
 - Slags or glass which solidify on cooler areas
 - Deposits such as carbon
- Can hold other materials such as solids to build up
- Weight of build up can
 - damage anchors
 - pull refractory off anchors
- Inpact when build up falls
- Choking of process
 - Move reaction zones

Vibration

- Lining moving out of place
- Cracking, crumbling
- Crushing of insulation

Thermomechanical Wear

- Pinch Spalling
- Restrained Expansion
- Creep

Pinch Spalling

- Excess Hoop stress, especially at hot face
- Cracking, esp near joints
- Uneven shapes and poor control of courses cause point contact
- Occurs soon after start up or if design temperature exceeded

Restrained Expansion

- Excess stresses
- Bulk Spalling
- Can allow other problems to start
- Expansion movements becoming fouled

Thank You For Your Attention