

Institute of Refractories Engineers

Transient Conditions Training Day 2016

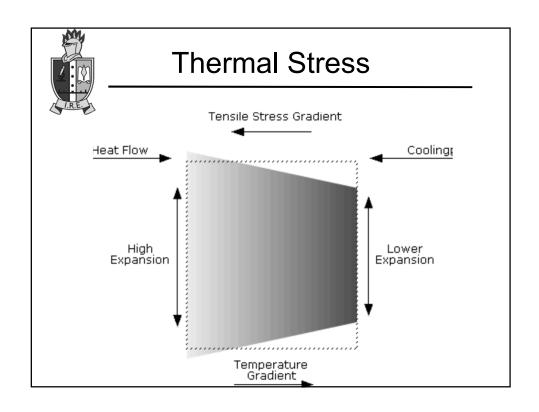
Sheffield 13 October 2016

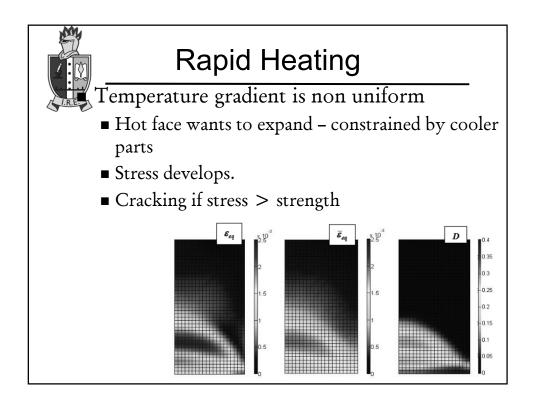
Contents

- What are Transient Conditions
- Heat Flow Modelling
- Thermal Shock

Transient Conditions

- Temperature changes over time
 - Warm up
 - Cool down
 - Process stoppages
 - Heating Processes
 - etc




Thermal Stress

- Thermal Expansion
 - Materials expand on heating and shrink on cooling
 - If gradient is uniform, this is stress free

Rapid Cooling

- Similar effect hot face in tension
- Cooling cracks thru lining thickness
- Heating cracks parallel to hot face
- Cycling both

How Much Change is Rapid

On heating a material expands

$$\Delta L = \alpha . L . \Delta T$$

Where α is the thermal expansion coefficient

If the expansion is stopped by the cooler parts, this leads to a strain $\boldsymbol{\epsilon}$

$$\varepsilon = \Delta L / L = \alpha \Delta T$$

This strain results in a stress, σ

$$\sigma = \varepsilon E = E \alpha \Delta T$$

Where E is the Elastic Modulus

How Much Change is Rapid

The material fails is this stress is higher than the failure stress (strength) . This gives a critical temperature rise, R

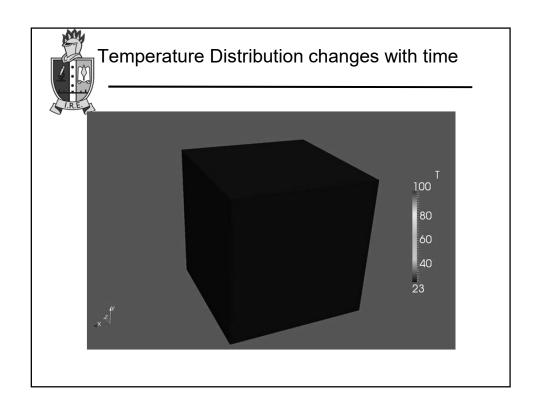
$$R = \sigma_F / (E \alpha)$$

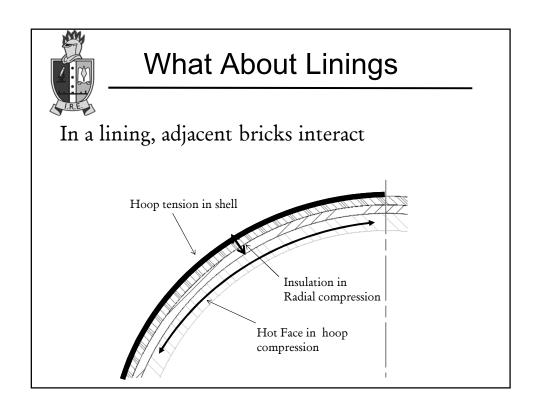
R is called the Thermal Shock Parameter and indicates the failure under 'ideal conditions'

Better thermal shock happens if

Strength is higher

Expansion is lower


Stiffness is lower


Turns same strain into smaller stress

Thermal Diffusivity

- · How quickly does heat spread
- How much energy is needed to heat the material
 - Specific Heat Capacity, C_p
 - The heat energy needed to increase the temperature of a substance by 1°C
 - Thermal Diffusivity, α
 - · Measure of how heat energy spreads through a material
 - $\alpha = \underline{k}$ ρC_p

Effect on Heating

- Weaker insulation layers compressed to give 'room'
- Cracks at corners pinch spalling

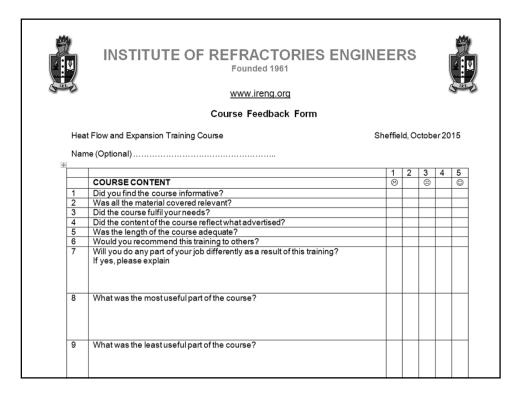
On Cooling

- Gaps can open in lining
 - Slag or metal penetration stops gaps closing on reheat
 - Successive damage

Any Questions

Institute of Refractories Engineers

Closing Comments


Training Day 2016

Sheffield 13 October 2016

Course Aim

- To give an appreciation of how heat flows through a lining and how thermal gradients are calculated and used
- To give an appreciation of thermal expansion and how thermal expansion allowances can be made.

