

# Institute of Refractories Engineers

# **Insulation Applications**

Sheffield October 9<sup>th</sup> 2014

Sam Franklin

# **Classification Temperature**

Insulation Firebrick to EN1094-2

The temperature (in 50°C steps) at which the PLC is  $\leq$ 2%.

|   | PLC at 1250°C | PLC at 1300°C |
|---|---------------|---------------|
| А | 0.6%          | 2.1%          |
| В | 1.9%          | 3.5%          |

Both would be classed as 1250°C materials This is in a 12h test



# **Classification Temperature**

Long term behaviour??

CLASSIFICATION TEMP IS **NOT** MAX SERVICE TEMP

What is Average temperature in the product? Cold face may not shrink

Can Exceed Classification Temp for SHORT times



Cost

Approx Relative Cost of different insulation types.

| Material    | Per Tonne     | Per Volume    | Per R Value |
|-------------|---------------|---------------|-------------|
| Castable    | 50-100        | 300-400       | 100-150     |
| Brick       | 100-150       | 600-1,200     | 100-500     |
| Fibre       | 300-1000      | 300-1,000     | 30-300      |
| Microporous | 10,000-20,000 | 20,000-50,000 | 1,000-1,500 |



## **Intermittent Process**

Energy required to heat and cool furnace

Low mass = energy saving

Heating rates – process efficiency



# **Thermal Conductivity**

Thermal Conductivity determines how thick a lining can beThinner linings allow a larger process volume

• Greater throughput



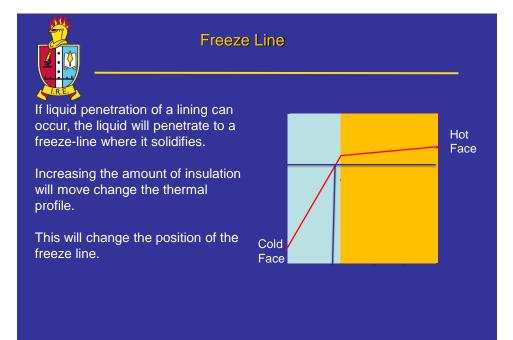


Installation

Ease of installation

- Equipment already on site
- Need for Anchors
- Access and material feed



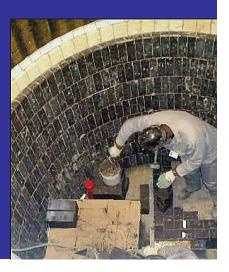

### **Furnace Atmosphere**

Acid gases

- Condense on cold areas
- Corrosion of casing and refractory

#### Hydrogen

- Common in petrochemical process
- Conductivity of insulation is much higher in hydrogen atmospheres
  - · Increased heat loss and shell temperatures






# Freeze Line

Example Steel Ladle

- Insulation needed to reduce heat loss during processing
- Attack in some cases due to slag attack of zone where slag has penetrated
- Need to balance heat loss versus refractory wear





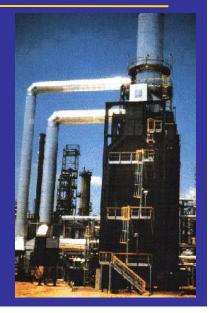
# **Too Much Insulation**

Can you have too much insulation

- Increased lining thickness and cost
- Reduced cool down time for maintenance stops
- Accelerated hot face wear
- Acid gas condensation



### **Mechanical Properties**


Lower strength than dense (hot face) products

- Castables usually have higher strength than other forms
- Ambient strength required for
  - Handling during installation
  - Load from refractories above
- Hot Strength Required for
  - Load from refractories at temperature
  - Load from furnace charge
  - Vibration
  - Abrasion from solids and dusts

# **Application - Example**

**Refinery Fired Heater** 

- Large fired heater, Heats oil for subsequent processing
- Radiant section is lined with insulation
  - Keep casing cool
  - Reduce heat losses
- Major energy cost in a refinery





# **Process Requirements**

| Hot face temperature in Radiant Zone<br>Tube temperature | ~1000-1100°C<br>~500°C          |
|----------------------------------------------------------|---------------------------------|
| Skin Temperature                                         | <100°C                          |
| Service Life                                             | 3-5 years between stops         |
| Fuel                                                     | A range of gas and liquid fuels |
|                                                          |                                 |



# Installation Factors

New units are often transported ready lined

During stops, repair is quicker than full replacement

Distortion of casing leads to hot spots

Local climate and labour availability can affect material choice



### **Material Selection - Brick**

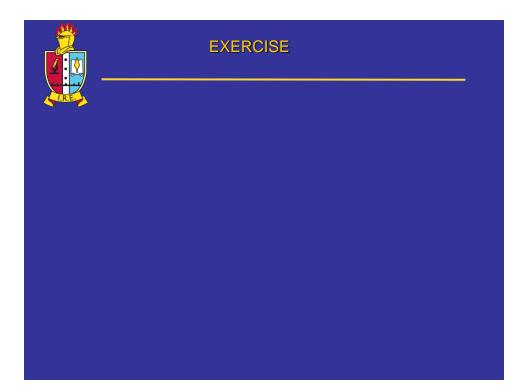
- ✓ Ease of installation
- ✓ Local Repair Possible
- ✓ Erosion resistant lining
- ✓ Can work with no hot face (except dirties fuels)
- X Shell distortion likely to lead to gas tracking
- X Transport of lined unit is difficult
- X Risk of Collapse

### **Material Selection - Castable**

- ✓ Shop Installation Easy
- ✓ Local Repair Possible
- ✓ Erosion resistant lining
- ✓ Can work with no hot face
- X Risk of Anchor Corrosion
- X Low Insulating Value (Thicker Lining)
- X Higher Density
- X Heavier lining
- X Installation difficult in v hot condition



# Material Selection - Fibre


- ✓ Good Insulating Value
- ✓ Light Weight
- ✓ Shop Lining is possible (Modules)
- X Problems from build up of ash or coking
- X Anchor corrosion can occur
- X Abrasion from dirtier fuels



# **Material Selection - Summary**

And the normally supplied lining material is.....

ALL TYPES ARE COMMONLY USED

