

Institute of Refractories Engineers

EXERCISE ANSWERS

IRE Training Day 31 October 2013

Sheffield

Sam Franklin

Hot Metal Ladle

- Thermal Shock Resistance
- Mechanical resistance, esp in lip
- CO resistance in safety lining
- High fired and alusite brick
 - High mullite content
 - High firing temp to enhance CO resistance
 - Increase alumina content to ~65% for greater mullite content and better slag resistance

Sulphur Recovery Unit

- Acid Resistance
- Low silica content hydrogen attack
- High temps
- Flame impingement
- Mullite bonded corundum
 - WFA based with mullite bond
 - Low porosity and permeability
 - Good thermal shock resistance

Thermal Oxidiser

- Main walls
 - Moderate temperature
 - Low temperature fluctuations
 - Flint clay brick
- Combustion chamber walls
 - Thermal shock
 - Moderate temperature
 - Andalusite brick
- Burner quarl
 - Thermal shock
 - Thermal stresses
 - Mullite bonded WFA

Cement Kiln

- High Temperature Abrasion
- Alkali Attack
- Loads from rotation
- Tight lining needed
- Fired Bauxite brick

Institute of Refractories Engineers

CONCLUSIONS

IRE Training Day 31 October 2013

Sheffield

Sam Franklin

What are Alumina Refractories

- Wide range of
 - Raw Materials
 - Chemistries
 - Properties
- Wide range of applications in all industries
- Continuing to be developped

Finally

- Feedback Form
- Safe Journey