INSTITUTE OF REFRACTORIES ENGINEERS

Founded 1961

www.ireng.org

Exercise 1 – Thermal Shock Parameters

Thermal Shock Parameters allow us to compare the thermal shock resistance of different materials by comparing fundamental properties like strength and thermal expansion.

In this exercise you should

1 – Rank the materials in order of thermal shock resistance based on your estimate/experience, without calculating a thermal shock parameter. The properties of five materials are listed below. Please do this part of the exercise BEFORE you reach for your calculator

2 – Calculate the thermal shock parameter (You can choose which one to calculate) and rank the materials again. Are there any surprises? Thermal shock parameter formula are given below.

3 – In service, thermal shock is only one consideration, other factors such as chemical resistance to the process are also critical. Rank the materials in order of suitability for the applications. Service conditions are given below.

MATERIAL PROPERTIES

Property and	Silicon Carbide	Mullite Brick	Magnesia	Magnesia	Fireclay Brick
symbol	Brick		Carbon Brick	Chrome Brick	
Density, ρ	27	2 55	2 95	33	22
(g/cm ³)		2.00	2.00	0.0	
Thermal					
Conductivity, λ	14	2.5	11	4.6	1.8
(W/mK)					
Thermal					
Expansion, α	4	4.5	13	10	6.5
(x 10 ⁻⁵ °C ⁻¹)					
MOR, of	45	14	15	12	6
(IVIF d) Flastic					
Modulus F	50	40	0.95	15	15
(MPa)	00	10	0.00	10	10
Poisson's					
Ratio, v	0.2	0.2	0.2	0.2	0.2
Specific Heat					
Capacity, c	750	1100	750	850	1050
(J/kg.°C)					
Work of					
Fracture, W _f	50	48	130	150	36
(N/m)					
Price per tonne	2800	1100	2300	2100	600
1 – Rank By					
Estimate					
Thermal Shock					
Parameter					
Rank by TSP					

INSTITUTE OF REFRACTORIES ENGINEERS

Founded 1961

THERMAL SHOCK PARAMETERS

$$R = \frac{\sigma_f(1-\nu)}{\alpha \cdot E}$$

$$R' = R\lambda = \frac{\sigma_f(1-\nu)\lambda}{E\alpha}$$

$$R'' = \frac{R'}{\rho \cdot c} = \frac{\lambda (1-\nu)}{E\alpha \rho c}$$

$$R'''' = \frac{EW_f}{\sigma_f^2 (1-\nu)}$$

$$R_{\text{st}} = \left(\frac{W_f}{\alpha^2 E}\right)^{\frac{1}{2}}$$