

Institute of Refractories Engineers

Design

The Good and The Bad

15 November 2018

Sam Franklin

Consequences of Failure

Refractory Failure can lead to

- Loss of Containment of
 - Hot Gas, Liquid and Solid
 - Loss of Pressure Containment
 - Escape of Toxic Materials
- Loss of Production
- Damage to Capital Plant
- Environmental Damage
- Injury and Death

Material Selection

 A Material Property – independent of shape

•
$$cte = \frac{\Delta L}{L} \cdot \frac{1}{\Delta T}$$

- ΔL is change in length (expansion)
- ΔT is temp change
- $\Delta L = cte.L.\Delta T$

Thermal Expansion

Thermal Expansion and Permanent Linear Change

Consider a duct 10m long, 2m dia lined with 230mm thick fireclay brick at a temperature of 1000°C. Elastic Modulus is ~ 20 Gpa.

- Thermal expansion is 55mm.
- Restraining force for zero movement 28,000tonnes

- If the unstoppable force meets the immovable object, something gets broken.
- Splitting of shell
- Weld failure
- Flange bolts stretch
- Shell Yields
- Insulation crushed
- Lining spalls

It is essential to make a suitable allowance for thermal expansion in any design. Several methods are commonly used.

Thermal Expansion

Expansion Allowance

Regular Gaps

- Leave gaps of pre-determined size
- These close up on heating
- Few, large gaps typically 50mm
- What can go wrong?
- What happens at branches?

Expansion Allowance

Burn-Out packs

- Smaller gaps, placed more frequently
- Less risk of slipping
- What can go wrong?

Expansion Allowance

Compressible Layer

- Layer can be behind hot face or fill gaps
 - Can eliminate gaps in hot face
- Range of compressible materials
- Compression is PLASTIC
- What can go wrong?

Anchor Expansion

- Expansion of anchors can cause anchor to cracking
 – cte 310 = 18x10⁻⁶/°C
 - cte 1600 castable $\approx 6 \times 10^{-6} / ^{\circ} C$
 - Anchor temp is higher than refractory temp

Design with Shaped Refractories

The last significant development in refractory design was made by the Romans

Arch Design

- An arch can span an opening and only has COMPRESSIVE FORCES
- In an arch there is a horizontal component of the force in the thrust line
- If the horizontal component is not constrained, the arch will collapse

- Circular lining is like an arch but 360°
- Where does the horizontal thrust go?
- Alternate view the wedge shape keeps the bricks in.
- How to get the last brick in?
- Every Brick is a 'Keystone'
- What load is placed on the vessel shell

Arch Construction

If the lining is not properly held in place, it will move and this causes problems

- Collapse
- Fluid Penetration

Local damage spreads

Bonding Bricks

- Bricks in cylindrical structures can be bonded to improve stability
- Two ways to bond the bricks

Ring-for-ring

Bonded

- Since every brick is a 'keystone', openings in the side of a cylinder remove the keystone.
- The larger the opening the bigger the problem
- Turbulence and abrasion can be worse in this area

- Brick Past Opening and Drill out
 - Simple design.
 - Hole size limited
 - Water to drill?
 - Where do joints lie?

- Special Brick/block
 - Simple design.
 - Can be built around instruments
 - Size limitations
 - Mould cost

- Monolithics
 - Simple
 - Why not use monolithic for whole lining? Is it OK in this area
 - Anchors and shuttering needed

- Can use different solutions in combination
- Cut in at bottom
- Monolithic at top – Why?

Branches and Insulation

Poor Design

- Insulation is exposed to process fluids
- Weld on shell exposed to radiant heat
- Gas tracking through porous insulation?
 - Risk of hot spot

Insulation	Hot Face
Insulation	

Monolithic Linings and Anchors

Metal Anchoring

- Rod Anchors
- Mesh
- Cells & Steel Dividers
- Ceramic Anchors

Branches and Insulation

Solution

- Carry insulation and/or dense lining into branch
- Shell is fully insulated
- Can prevent gas tracking
- Larger branch and flange

Monolithic Linings and Anchors

Anchor Pitching

Need to AVOID a regular array with possibility for long straight cracks

Monolithic Linings and Anchors

- Hex mesh, Speed Cells, K Bars through to hot face
- Ceramic Anchors- through to hot face
- Metallic Anchors approx 2/3 of hot face thickness

Thank You For Your Attention